3.309 \(\int \frac{x^2 \sqrt{1+2 x^2+2 x^4}}{3+2 x^2} \, dx\)

Optimal. Leaf size=417 \[ -\frac{7 \sqrt{2 x^4+2 x^2+1} x}{6 \sqrt{2} \left (\sqrt{2} x^2+1\right )}+\frac{1}{6} \sqrt{2 x^4+2 x^2+1} x-\frac{1}{8} \sqrt{15} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )-\frac{\left (17 \sqrt{2}-4\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{6\ 2^{3/4} \left (3 \sqrt{2}-2\right ) \sqrt{2 x^4+2 x^2+1}}+\frac{7 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{6\ 2^{3/4} \sqrt{2 x^4+2 x^2+1}}-\frac{5 \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{8\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}} \]

[Out]

(x*Sqrt[1 + 2*x^2 + 2*x^4])/6 - (7*x*Sqrt[1 + 2*x^2 + 2*x^4])/(6*Sqrt[2]*(1 + Sq
rt[2]*x^2)) - (Sqrt[15]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/8 + (7*(1
 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan
[2^(1/4)*x], (2 - Sqrt[2])/4])/(6*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - ((-4 + 17*S
qrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*Elliptic
F[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(6*2^(3/4)*(-2 + 3*Sqrt[2])*Sqrt[1 + 2*
x^2 + 2*x^4]) - (5*(3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 +
 Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt
[2])/4])/(8*2^(3/4)*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.811266, antiderivative size = 604, normalized size of antiderivative = 1.45, number of steps used = 12, number of rules used = 7, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.241 \[ -\frac{7 \sqrt{2 x^4+2 x^2+1} x}{6 \sqrt{2} \left (\sqrt{2} x^2+1\right )}+\frac{1}{6} \sqrt{2 x^4+2 x^2+1} x-\frac{1}{8} \sqrt{15} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )+\frac{\left (1+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{6\ 2^{3/4} \sqrt{2 x^4+2 x^2+1}}+\frac{3 \left (1-\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{8 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}}+\frac{15 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{4\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}+\frac{7 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{6\ 2^{3/4} \sqrt{2 x^4+2 x^2+1}}-\frac{5 \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{8\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}} \]

Warning: Unable to verify antiderivative.

[In]  Int[(x^2*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

(x*Sqrt[1 + 2*x^2 + 2*x^4])/6 - (7*x*Sqrt[1 + 2*x^2 + 2*x^4])/(6*Sqrt[2]*(1 + Sq
rt[2]*x^2)) - (Sqrt[15]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/8 + (7*(1
 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan
[2^(1/4)*x], (2 - Sqrt[2])/4])/(6*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (15*(1 + Sq
rt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1
/4)*x], (2 - Sqrt[2])/4])/(4*2^(3/4)*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4]) +
(3*(1 - Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]
*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(8*2^(1/4)*Sqrt[1 + 2*x^2 + 2*
x^4]) + ((1 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x
^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(6*2^(3/4)*Sqrt[1 + 2*x^
2 + 2*x^4]) - (5*(3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + S
qrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2
])/4])/(8*2^(3/4)*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 74.9102, size = 544, normalized size = 1.3 \[ \frac{x \sqrt{2 x^{4} + 2 x^{2} + 1}}{6} - \frac{7 \sqrt{2} x \sqrt{2 x^{4} + 2 x^{2} + 1}}{12 \left (\sqrt{2} x^{2} + 1\right )} + \frac{7 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{12 \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{15 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{8 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{3 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (- 2 \sqrt{2} + 4\right ) \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{32 \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{\sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 + 2 \sqrt{2}\right ) \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{24 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{5 \cdot 2^{\frac{3}{4}} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 + 3 \sqrt{2}\right ) \left (\sqrt{2} x^{2} + 1\right ) \Pi \left (- \frac{11 \sqrt{2}}{24} + \frac{1}{2}; 2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{32 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{\sqrt{15} \operatorname{atan}{\left (\frac{\sqrt{15} x}{3 \sqrt{2 x^{4} + 2 x^{2} + 1}} \right )}}{8} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2*(2*x**4+2*x**2+1)**(1/2)/(2*x**2+3),x)

[Out]

x*sqrt(2*x**4 + 2*x**2 + 1)/6 - 7*sqrt(2)*x*sqrt(2*x**4 + 2*x**2 + 1)/(12*(sqrt(
2)*x**2 + 1)) + 7*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sq
rt(2)*x**2 + 1)*elliptic_e(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(12*sqrt(2*x**4
 + 2*x**2 + 1)) + 15*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*
(sqrt(2)*x**2 + 1)*elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(8*(-3*sqrt(
2) + 2)*sqrt(2*x**4 + 2*x**2 + 1)) - 3*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt
(2)*x**2 + 1)**2)*(-2*sqrt(2) + 4)*(sqrt(2)*x**2 + 1)*elliptic_f(2*atan(2**(1/4)
*x), -sqrt(2)/4 + 1/2)/(32*sqrt(2*x**4 + 2*x**2 + 1)) + 2**(1/4)*sqrt((2*x**4 +
2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(2 + 2*sqrt(2))*(sqrt(2)*x**2 + 1)*elliptic_f
(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(24*sqrt(2*x**4 + 2*x**2 + 1)) - 5*2**(3/
4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(2 + 3*sqrt(2))*(sqrt(2)*x*
*2 + 1)*elliptic_pi(-11*sqrt(2)/24 + 1/2, 2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/
(32*(-3*sqrt(2) + 2)*sqrt(2*x**4 + 2*x**2 + 1)) - sqrt(15)*atan(sqrt(15)*x/(3*sq
rt(2*x**4 + 2*x**2 + 1)))/8

_______________________________________________________________________________________

Mathematica [C]  time = 0.199715, size = 204, normalized size = 0.49 \[ \frac{8 x^5+8 x^3+(13-27 i) \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} F\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+14 i \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} E\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )-15 (1-i)^{3/2} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} \Pi \left (\frac{1}{3}+\frac{i}{3};\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+4 x}{24 \sqrt{2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^2*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

(4*x + 8*x^3 + 8*x^5 + (14*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)
*x^2]*EllipticE[I*ArcSinh[Sqrt[1 - I]*x], I] + (13 - 27*I)*Sqrt[1 - I]*Sqrt[1 +
(1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqrt[1 - I]*x], I] - 15*(
1 - I)^(3/2)*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticPi[1/3 + I/3, I
*ArcSinh[Sqrt[1 - I]*x], I])/(24*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.012, size = 509, normalized size = 1.2 \[{\frac{x}{6}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}+{\frac{{\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{3\,\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{ \left ({\frac{1}{6}}-{\frac{i}{6}} \right ) \left ({\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) -{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) \right ) }{\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{3\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{2\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{{\frac{3\,i}{4}}{\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{3\,{\it EllipticE} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{4\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{{\frac{3\,i}{4}}{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{5}{4\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\it EllipticPi} \left ( x\sqrt{-1+i},{\frac{1}{3}}+{\frac{i}{3}},{\frac{\sqrt{-1-i}}{\sqrt{-1+i}}} \right ){\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x)

[Out]

1/6*x*(2*x^4+2*x^2+1)^(1/2)+1/3/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(
1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+(
-1/6+1/6*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)
^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-EllipticE(x*(-1+I)^(
1/2),1/2*2^(1/2)+1/2*I*2^(1/2)))+3/2/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^
2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1
/2))-3/4*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)
^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-3/4/(-1+I)^(1/2)*(-I*
x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1
/2),1/2*2^(1/2)+1/2*I*2^(1/2))+3/4*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^
2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1
/2))-5/4/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(
1/2)*EllipticPi(x*(-1+I)^(1/2),1/3+1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{2}}{2 \, x^{2} + 3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{2}}{2 \, x^{2} + 3}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2} \sqrt{2 x^{4} + 2 x^{2} + 1}}{2 x^{2} + 3}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2*(2*x**4+2*x**2+1)**(1/2)/(2*x**2+3),x)

[Out]

Integral(x**2*sqrt(2*x**4 + 2*x**2 + 1)/(2*x**2 + 3), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{2}}{2 \, x^{2} + 3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3), x)